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1. For A = (2 1 z) € M3,3(C), find a unitary matrix P and a diagonal matrix
0 —i 1

D such that P*AP = D.
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2. Sec. 6.5 Q9

9. Let U be a linear operator on a finite-dimensional inner product space
V. If |U(z)|| = ||z| for all x in some orthonormal basis for V, must U
be unitary? Justify your answer with a proof or a counterexample.

Coidor V=& - A= (] [)  uel
p= £ (. 6) T % on b for v
Then ez (12l] frr wef

e [luc()o = 2 2 =il

So W % et w«fﬁw&



3. Sec. 6.5 Q19

19. Let W be a finite-dimensional subspace of an inner product space V.
By Theorem 6.7 (p. 352) and the exercises of Section 1.3, V. = W@ W+,
Define U: V — V by U(vy + v3) = v1 — vg, where v1 € W and vy € WL,
Prove that U is a self-adjoint unitary operator.
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4. Sec. 6.6 Q4

4. Let W be a finite-dimensional subspace of an inner product space V.
Show that if T is the orthogonal projection of V. on W, then | — T is the
orthogonal projection of V on W+.
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5. Sec. 6.6 Q7(c)(d)(f)

T

Let T be a normal operator on a finite-dimensional complex inner prod-
uct space V. Use the spectral decomposition A\1T1 + AoTo + -+ ATk
of T to prove the following results.

(a) If g is a polynomial, then

k

g(T) = g(\)Ta.

=1

(b) If T" =Ty for some n, then T = Ty,.
(c) Let U be a linear operator on V. Then U commutes with T if and

only if U commutes with each T;.

(d) There exists a normal operator U on V such that U2 = T.

(e) T is invertible if and only if \; # 0 for 1 <i < k.

(f) T is a projection if and only if every eigenvalue of T is 1 or 0.
(g) T =-—T*if and only if every \; is an imaginary number.

(¢c) Suppose U commutes with each T;. Then we have
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Conversely, suppose U commutes with 7. Note that for each T;, there
exists some polynomial g; such that ¢;(T) = T;. Then we have

UT; = Ugi(T) = ¢:(T)U = T;U.
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1) Note that T;T; = 6;;T; and T = Zf‘  AiT;. Let

I3

U=Y NT.

=1

Then one can easily check that U® = T'. Since 7, are self-adjoint,
that is 7, is normal, thus U is normal. too.

) Note that V is finite-dimensional. So 7" is invertible if and only if

N(T) = 0. But this means 0 is not an eigenvalue of 7.

) Suppose 1'is a projection of V on W along W+, Let A be eigenvalue

and v € V be the corresponding eigenvector. Then there is some
we W and y € W' such that v = w + y. So, we have

w=T(w+y)=Mw+y)
(1—=ANw = Ay.

This means that A can only be 1 or 0.



